Penalized contrast estimator for adaptive density deconvolution
نویسندگان
چکیده
The authors consider the problem of estimating the density g of independent and identically distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n, ε is a noise independent of X, with σε having known distribution. They present a model selection procedure allowing to construct an adaptive estimator of g and to find non-asymptotic bounds for its L2(R)-risk. The estimator achieves the minimax rate of convergence, in most cases where lowers bounds are available. A simulation study gives an illustration of the good practical performances of the method. Déconvolution adaptative de densité par contraste pénalisé. Résumé : Les auteurs considèrent le problème de déconvolution c’est-à-dire de l’estimation de la densité de variables aléatoires identiquement distribuées Xi, à partir de l’observation de Zi où Zi = Xi + σεi, pour i = 1, . . . , n, où les erreurs σεi sont de densité connue. Par une procédure de sélection de modèles qui permet d’obtenir des bornes de risque non asymptotiques, ils construisent un estimateur adaptatif de la densité des Xi. L’estimateur atteint de façon automatique la vitesse minimax dans la plupart des cas, que les erreurs ou la densité à estimer soient peu ou très régulières. Une étude par simulation illustre les bonnes performances pratiques de la méthode.
منابع مشابه
Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model
Two adaptive nonparametric procedures are proposed to estimate the density of the random effects in a mixed-effect Ornstein-Uhlenbeck model. First a kernel estimator is introduced with a new bandwidth selection method developed recently by Goldenshluger and Lepski (2011). Then, we adapt an estimator from Comte et al. (2013) and we propose an estimator that uses deconvolution tools and depends o...
متن کاملNew adaptive strategies for nonparametric estimation in linear mixed models
This paper surveys new estimators of the density of a random effect in linear mixed-effects models. Data are contaminated by random noise, and we do not observe directly the random effect of interest. The density of the noise is suposed to be known, without assumption on its regularity. However it can also be estimated. We first propose an adaptive nonparametric deconvolution estimation based o...
متن کاملNonparametric estimation of the stationary density and the transition density of a Markov chain
In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (Xi). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables to estimate the density g of (Xi,Xi+1) and so to provide an adaptiv...
متن کاملDeconvolution with Estimated Characteristic Function of the Errors
We study the following model of deconvolution Y = X+ε with i.i.d. observations Y1, . . . , Yn and ε−1, . . . , ε−M . The (Xj)1≤j≤n are i.i.d. with density f , independent of the εj . The aim of the paper is to estimate f without knowing the density fε of the εj . We first define an estimator, for which we provide bounds for the pointwise and the integrated L-risk. We consider ordinary smooth an...
متن کاملNonparametric adaptive estimation for pure jump Lévy processes
This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample path is observed at n discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvolution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound for the L-risk, under ge...
متن کامل